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Abstract. Fundus photography is an essential examination for clinical
and differential diagnosis of fundus diseases. Recently, Ultra-Wide-angle
Fundus (UWF) techniques, UWF Fluorescein Angiography (UWF-FA)
and UWF Scanning Laser Ophthalmoscopy (UWF-SLO) have been grad-
ually put into use. However, Fluorescein Angiography (FA) and UWF-FA
require injecting sodium fluorescein which may have detrimental influ-
ences. To avoid negative impacts, cross-modality medical image gener-
ation algorithms have been proposed. Nevertheless, current methods in
fundus imaging could not produce high-resolution images and are unable
to capture tiny vascular lesion areas. This paper proposes a novel condi-
tional generative adversarial network (UWAT-GAN) to synthesize UWF-
FA from UWF-SLO. Using multi-scale generators and a fusion module
patch to better extract global and local information, our model can gen-
erate high-resolution images. Moreover, an attention transmit module is
proposed to help the decoder learn effectively. Besides, a supervised app-
roach is used to train the network using multiple new weighted losses on
different scales of data. Experiments on an in-house UWF image dataset
demonstrate the superiority of the UWAT-GAN over the state-of-the-art
methods. The source code is available at: https://github.com/Tinysqua/
UWAT-GAN.

Keywords: Fluorescein Angiography · Cross-modality Image
Generation · Ultra-Wide-angle Fundus Imaging · Conditional
Generative Adversarial Network

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-43990-2_70.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Greenspan et al. (Eds.): MICCAI 2023, LNCS 14226, pp. 745–755, 2023.
https://doi.org/10.1007/978-3-031-43990-2_70

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43990-2_70&domain=pdf
https://github.com/Tinysqua/UWAT-GAN
https://github.com/Tinysqua/UWAT-GAN
https://doi.org/10.1007/978-3-031-43990-2_70
https://doi.org/10.1007/978-3-031-43990-2_70


746 Z. Fang et al.

1 Introduction

Fluorescein Angiography (FA) is a commonly utilized imaging modality for
detecting and diagnosing fundus diseases. It is widely used to image vascu-
lar structures and dynamically observe the circulation and leakage of contrast
agents in blood vessels. Recently, the emergence of Ultra-Wide-angle Fundus
(UWF) imaging has enabled its combination with FA and Scanning Laser Oph-
thalmoscopy (SLO), namely UWF-FA and UWF-SLO. The UWF-FA imaging
enables simultaneous and high-contrast angiographic images of all 360◦C of the
mid and peripheral retina [1,4,21]. However, both FA and UWF-FA require
injecting a fluorescent dye (i.e., sodium fluorescein) into the anterior vein of the
patient’s hand or elbow, which then passes through the blood circulation to the
fundus blood vessels. Some patients may experience adverse reactions such as
vomiting and nausea during or after the examination. Moreover, it is not suitable
for patients with serious cardiovascular and other systemic diseases.

Cross-modality medical image generation provides a new method for solv-
ing the aforementioned problems. Multi-scale feature maps from different input
modalities usually have similar structures. Hence, different contrasts can be
merged to generate target images based on multimodal deep learning to pro-
vide more information for diagnosis [15]. Recently, the generative adversarial
networks (GANs) [5] and their variants have made breakthroughs in this field.
The idea of PatchGAN [12] was proposed to synthesize clearer images. Liu et
al. [14] proposed an end-to-end multi-input and multi-output deep adversarial
learning network for MR image synthesis. Xiao et al. [22] proposed a Transfer-
GAN model by combining transfer learning and GANs to generate CT high-
resolution images. By merging multi-scale generators, these networks can explore
fine and coarse features from images [10]. Kamran et al. [9] proposed a semi-
supervised model called VTGAN introducing transformer module into discrimi-
nators, helping the synthesis of vivid images. However, previous methods yielded
lower-resolution situations and most discriminators can only take squared inputs
(width equal to height) [18]. Moreover, misaligned data and lower attention on
disease-related regions as well as the correctness of synthesized lesions remain
significant issues. Furthermore, the highly non-linear relationship between dif-
ferent modalities makes the mapping from one modality to another difficult to
learn [23].

In this paper, we present the Ultra-Wide-Angle Transformation GAN
(UWAT-GAN), a supervised conditional GAN capable of generating UWF-FA
from UWF-SLO. To address the image misalignment issue, we employ an auto-
mated image registration method and integrate the idea of pix2pixHD [20] to
use multi-scale discriminators. In addition, we use the multi-scale generators to
synthesize high-resolution images as well as improve the ability to capture tiny
vascular lesion areas and employ multiple new weighted losses on different scales
of data to optimize model training. For evaluation metrics, we use Fréchet Incep-
tion Distance (FID) [6], Kernel Inception Distance (KID) [11], Inception Score
(IS) [2] and Learned Perceptual Image Patch Similarity (LPIPS) [24] to quantify
the quality of images. Finally, we compare UWAT-GAN with the state-of-the-art
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Fig. 1. The overall framework of UWAT-GAN.

image synthesis frameworks [3,7,20] for qualitative assessment and conduct an
ablation study. Our main contributions are summarised as follows:

1). To the best of our knowledge, we present the first study to synthesize UWF-
FA from UWF-SLO, overcoming the limitations of UWF-FA imaging.

2). We propose a novel UWAT-GAN utilizing multi-scale generators and multi-
ple new weighted losses on different data scales to synthesize high-resolution
images with the ability to capture tiny vascular lesion areas.

3). We assess the performance of the UWAT-GAN on a clinical in-house dataset
and adopt an effective preprocessing method for image sharpening and regis-
tration to enhance the clarity of vascular regions and tackle the misalignment
problem.

4). We demonstrate the superiority of the proposed UWAT-GAN against the
state-of-the-art models through extensive experiments, comparisons, and
ablation studies.

2 Methodology

We propose a supervised conditional GAN for synthesizing UWF-FA from UWF-
SLO images, as illustrated in Fig. 1. In order to achieve the desired outcome, we
propose the concept of a fine-coarse level generator in whole architecture (Sect.
2.1) and a fusion module works on result of both level generators (Sect. 2.2).
Then the Attention Transmit Module is put forward to improve the U-Net-like
architecture (Sect. 2.3). Additionally, we provide a comprehensive description of
up-down sampling process and architecture of multi-scaled discriminators (Sec.
2.4). Eventually, we discuss the proposed loss function terms and their impacts
in detail (Sect. 2.5).
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Fig. 2. Details of two-level generators and their building blocks. (A) GenF consists
of two down and up processes, and ultimately sends its resulting patch to GenC ; (B)
GenC comprises of three down and up processes before sending its resulting patch to
GenF .

2.1 Overall Architecture

UWF-FA has global features such as eyeballs and long-thick blood vessels, as
well as local features such as small lesions and capillary blood vessels. However,
generating images with both global and local features using a single generator
is challenging. To address this issue, we devise two different levels of generators.
The coarse generator GenC extracts global information and generates a result
based on this information, while the fine generator GenF extracts local infor-
mation. The results of global and local information can be used, alternately, as
a reference for each other. Hence, this allows the extraction and utilization of
both global and local information. In Fig. 1, the original image is fed into the
entire model. After down-sampling, the image is passed into GenC . Then, we
extract a patch from the original image as an input to GenF as described in
Sect. 2.3. Both generators share the down-sample residual block and attention
concatenated modules. Note that both generators generate a UWF-FA image
and pass it to the discriminators. However, the output of GenF is the one we
considered in the later experiments.

2.2 Patch and Fusion Module

In Fig. 1, GenF receives a randomly cropped patch as the input instead of
the original image. This is because directly inputting the original image would
occupy a large amount of memory and significantly reduce the training speed.
Therefore, we only feed one cropped patch of the original image to GenF in each
step. In Fig. 2(A), a fusion block takes both patches from GenF and GenC . To
get the same region from GenF and GenC , we resized the images to the same
size, and cropped the patches from the same position. These two patches are
concatenated at the depth level and passed into a two-layer fusion operation.
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2.3 Attention Transmit Module

In Fig. 2, the attention module is designed based on U-Net-like [16] architecture,
whose sampling process can provide more information to the decoder. Whereas,
when synthesizing UWF-FA from UWF-SLO, the information density of the
source image is low. For instance, the eye sockets in the periphery of the image
are sparsely distributed blood vessels in some areas. Therefore, completely pass-
ing the graphs from the down-sampling process to the up-sampling process is
not appropriate. Subsequently, images that pass through Attention Transmit
Module can first extract useful information so that the decoder uses this infor-
mation, efficiently. The multi-head attention [19] and the CNN-Attention blocks
are shown in Fig. 3.

Element-wise 
addition

Input/Output Padding Conv2d Leaky Relu Normalization

Downsample 
block

Downsample 
block

Upsample blockUpsample block CNN-Attention blockCNN-Attention block Residual blockResidual block

Fig. 3. Different blocks of the proposed generator. From left to right; the initial block,
downsampling block, upsampling block, CNN-Attention block, and residual block.

2.4 Generator and Discriminator Architectures

After conducting multiple experiments, we choose three down-sample layers
for GenF and two down-sample layers for GenC . In addition, each generator
includes an initial block, down-sample block, up-sample block, residual block,
and attention transmit module, which are shown in Fig. 3. The initial block con-
tains a reflection padding, a 2D convolution layer, and the Leaky-Relu activation
function. The down/up-sampling blocks consist of a 2D convolution/transposed
layer and the activation function combined with normalization. Additionally, the
multi-scale discriminator in pix2pixHD [20] is employed to evaluate the output
of the generator. For generator GenX , the first discriminator DX1 takes the
original and generated image P1 while the second discriminator DX2 takes the
down-sampled version of P1. Although theoretically, a multi-level discriminator
can be applied by generating an image pyramid for an image, we use DC1 and
DC2 for GenC , and DF for GenF in our framework.
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2.5 Proposed Loss Function

Denote the two generators GenC and GenF as GC and GF , the three discrimina-
tors as DC1, DC2, and DF , and the paired variables {(ci, xi)}, where c represents
the distribution of original input as a condition and x represents the distribution
of ground truth (i.e., real UWF-FA image). Given the conditional distribution
c, we aim to maximize the loss of DC1, DC2, and DF while minimizing the loss
of GenC and GenF using the following objective function:

min
GC

max
DC1,DC2

∑

k=1,2

LcGAN (GC ,DCk) + min
GenF

max
DF

LcGAN (GF ,DF ), (1)

where LcGAN is given by:

E(c,x)[log(D(c, x))] + Ec[log(1 − D(G(c), c)]. (2)

We adopt the feature mapping (FM) loss [20] in our framework. Firstly, we
collect the target images and their translated counterparts as a pair of images.
Then, we split the discriminators into multiple layers and obtain the output from
each layer. Denote D(i) as the ith-layer to extract the feature, the loss function
is then defined as:

LFM (G.Dk) = E(c,x)

T∑

i=1

1
Ni

[
∥∥Di

k(c, x) − Di
k(c,G(c))

∥∥
1
], (3)

where T is the total number of layers and Ni represents each layer’s number of
elements. (e.g., convolution, normalization, Leaky-Relu means three elements).
Minimizing this loss ensures that each layer can extract the same features from
the paired images. Additionally, we use the perceptual loss [8] in our framework,
which is utilized by a pretrained VGG19 network [17], to extract the features
from the paired images and it is defined as:

LV GG(G.Dk) =
N∑

i=1

1
Mi

[
∥∥V i(c, x) − V i(c,G(c))

∥∥
1
], (4)

where N represents the total number of layers, Mi denotes the elements in each
layer, and V i is the ith-layer of the VGG19 network. The final cost function is
as follows:

min
GC

( max
DC1,DC2

∑

k=1,2

LcGAN (GC ,DCk) + λFMC

∑

k=1,2

LFM (GC ,DCk)

+ λV GGC

∑

k=1,2

LV GG(GC ,DCk)) + min
GF

(max
DF

LcGAN (GF ,DF )

+ λFMFLFM (GF ,DF ) + λV GGFLV GG(GF ,DF )).

(5)

where λFMC , λV GGC , λFMF , λV GGF indicate adjustable weight parameters.
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3 Experiments and Results

3.1 Data Preparation and Preprocess

In our experiments, we utilized an in-house dataset of UWF images obtained
from a local hospital, comprising UWF-FA and UWF-SLO images. The UWF-
SLO are in 3-channel RGB format, whereas the UWF-FA images are in 1-channel
format. Each image pair was collected from a unique patient. However, from a
clinical perspective, images taken with an interval of more than one day or those
with noticeable fresh bleeding were excluded. Additionally, images that contain
numerous interfering factors affecting their quality were also discarded. After the
quality check, we have 70 paired images with the size of 3900 × 3072, of which
70% were randomly allocated for training and 30% for testing, respectively.

Furthermore, we employed image sharpening through histogram equalization
to enhance the clarity of images. We then utilized automated image registration
software, i2k Retina Pro, to register each pair of images which changed the image
size. To standardize the size of each image, we resized the registered images to
2432× 3702. Subsequently, we randomly cropped the resized images with a size
of 608× 768 into different patches. And 50 patches could be obtained for each
image. Finally, we adopted data augmentation using random flip and rotation
to increase the number of training images from 49 pairs to 1960 pairs.

3.2 Implementation Details

All our experiments were conducted on the PyTorch 1.12 framework and carried
out on two Nvidia RTX 3090Ti GPUs. Our model was trained from scratch to
200 epochs. The parameters were optimized by the Adam optimizer algorithm
[13] with learning rate α = 0.0002, β1 = 0.5 and β2 = 0.999. We used a batch
size of 2 to train our model and set λFMF = λFMC = λV GGF = λV GGC= 10
(Eq. 5).

3.3 Comparisons

We first compared the performance of our model with some state-of-the-art
GAN-based models including: Pix2pix [7], Pix2pixHD [20] and StarGAN-v2 [3].
For a fair comparison, we took the default parameters of the open-source codes of
the competing methods, ensuring that the data volume matched the number of
training cycles. We used the FID(↓),KID(↓), LPIPS(↓) and IS(↑) to evaluate
the generated UWF-FA. Table 1 shows the generation performance of different
methods. Overall, our method achieves the best in all metrics compared to other
models. The Pix2Pix attained the worst performance in all evaluation metrics
while PixPixHD and StarGAN had comparable performance. In general, our
method outperformed the competing methods and improved FID, KID, IS, and
LPIPS by at least 24.47%, 39.95%, 3.59%, and 14.04%, respectively. Although
StarGAN-v2 yielded the second-best performance, it is still less comparable with
the proposed UWAT-GAN due to the lesion generation module which could
capture tiny image details and improve overall performance (see Fig. 4).
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Table 1. Comparison with the state-of-the-art methods using 4 evaluation metrics.
The * means that the official code hasn’t provided the way to measure it.

Methods FID(↓) KID(↓) IS(↑) LPIPS(↓)

Pix2Pix [7] 135.4038 0.1094 1.2772 0.4575
Pix2PixHD [20] 76.76 0.0491 1.0602 0.4451
StarGAN-v2 [3] 74.38 0.0433 * 0.4577
UWAT-GAN MNA 67.96 0.0308 1.2757 0.4086
UWAT-GAN 55.59 0.0260 1.323 0.3826

UWF-FAUWF-SLO AM AM NAMNAM pix2pixHD

Fig. 4. Visualization of original and generated images. From left to right: source UWF-
SLO, UWF-FA, the proposed framework with and without the attention transmit mod-
ule, and the pix2pixHD, respectively.

3.4 Ablation Study

To evaluate the significance of the attention transmit module proposed in
UWAT-GAN, we trained our model with and without this module, namely MA

and MNA, respectively. Unlike the generated images of MA, we found that MNA

was not so distinctive as some vessels were missing and some interference of
eyelashes was incorrectly considered as vessels. In Fig. 4, we showed the original
pair of UWF-SLO and UWF-FA images and the generated images with MA and
MNA. It is clear that the proposed method can generate good images and pre-
serve small details. It becomes more distinctive when the attention module was
used, as shown in the enlarged view of the red rectangle. It is also obvious that
the FID and KID scores were improved by 22.25% and 18.46%, respectively.

4 Discussion and Conclusion

To address the potential adverse effects of fluorescein injection during FA, we
propose UWAT-GAN to synthesize UWF-FA from UWF-SLO. Our method can
generate high-resolution images and enhance the ability to capture small vascular
lesions. Comparison and ablation study on an in-house dataset demonstrate the
superiority and effectiveness of our proposed method. However, our model still
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has a few limitations. First, not every pair of images can be registered since some
paired images may have fewer available features, making registration difficult.
Second, our model’s accuracy in synthesizing very tiny lesions is not optimal, as
some lesions cannot be well generalized. Third, the limited size of our dataset
is relatively small and may affect the model performance. In the future, we
aim to expand the size of our dataset and explore the use of the object detection
model, especially for small targets, to push our model pay more attention to some
lesions. After further validation, we aim to adopt this method as an auxiliary
tool to diagnose and detect fundus diseases.
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